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Progress in numerical weather prediction since about 1977 is reviewed. The development of 
larger and faster computers now allows a global forecast to be made in three minutes per day 
using a 150 km grid in the horizontal, 15 levels in the vertical, and one of the very efftcient 
integration schemes now available. The forecasts produced are useful guidance to forecasters 
to about four days on average, but there is a large difference in performance from case to 
case. In this review recent developments in understanding the solutions to the governing 
equations are discussed, some of the efftcient integration schemes are described in detail, and 
an example of the current standard of forecasts is displayed. 

1. INTRODUCTION 

This paper reviews recent progress in numerical methods used in meteorology. It 
takes as a starting point the reviews by Kasahara and by Arakawa and Winninghof 
in (11, published in 1977, and the textbook by Haltiner and Williams [2], published 
in 1980. Since these reviews were prepared, larger and faster computers employing 
vector and parallel processing architecture, notably the CRAY-1 and CYBER 205, 
have come into use and the numerical models used in meteorology have expanded 
accordingly. Around 1975, models used for operational forecasts for up to three days 
ahead used grid lengths of 300400 km and covered areas smaller than the Northern 
hemisphere. Today, models with grid lengths of 150 km covering the whole globe can 
be used operationally, taking only a few minutes of computing time per model day. 
Similar improvements can be made in other meteorological models. Limited area 
models used for rainfall prediction can be run operationally with grid lengths of 
50 km and extensive research is being carried out with “mesoscale” models with grid 
lengths as small as 1 km. On a larger scale, climate simulation experiments requiring 
integration periods of several years can now be run using models of a size that could 
only be afforded for short range forecasts in 1975. 

Associated with these increases in computing power have come further 
developments in numerical techniques and analysis. At the time of the review in [l] it 

1 
0021-9991183 $3.00 



This is reasonable, since even a good approximation 

should produce error growth when there is compression. Once the discontinuity in the 

solution of (2.14) has formed, artificial viscosity has to be added, explicitly or 

implicitly, in any case. 

When solving systems such as (2.11) or (2.12), where to truncation error in the calculation of horizontal 

derivatives. Improvements in grid resolution since then have substantially reduced 

these errors. Thus while with a grid length of 400 k m  substantially better results are 

obtained using either staggering of the variables on the mesh [3] or fourth-order 

differencing in the advection terms [4], when these changes are made using a 200 k m  

grid the effect on forecast errors is much less. Studies made at several institutes, e.g., 

[5, 61, show only a marginal improvement when the gridlength is reduced below 

200 k m .  Similarly, the intercomparison of forecasts f r o m  different models of Cullen et 

al. [7] did not show markedly better skill than the earlier set of results f r o m  lower 

resolution models given by Baumhefner and Downey [8]. Though the models in [7] 

showed increased amplitudes for the weather systems, errors in position were not 

greatly altered and the overall mean error statistics reported in [ 71 are no better than 

in [8]. This is consistent with the analysis of the causes of errors in a 48 hour 

forecast by Robert [9]. His conclusion was that for second-order finite differencing 

on a 400 k m  grid, horizontal truncation errors accounted for 35 % of the total. When 

the grid is refined to 200 k m  the errors f r o m  this cause should decrease by a factor of 

four, and only represent 12% of the total, while effects of inadequate initial data 

might rise f r o m  18 % to 25 %. In addition, while sensitivity experiments using models 

with different resolutions and different formulations have shown diminishing returns 

in improving forecast skill, consolidation of and improvements to all parts of the 

models in the current generation of operational forecasts have resulted in useful 

improvements over the models available in 1975. For instance, recent skill scores 

f r o m  the European Centre for Medium Range Weather Forecasts (ECMWF) (Fig. 1) 

show a m a r k e d  improvement in the forecast statistics over those quoted in [I]. In 

addition to improved statistics, these forecasts are assessed as useful guidance out to 

hl 

FIG. 1. Standard deviations of 500 mb error for European area (36”-72’ N, 12’ W-42’ E) during 
1980 from ECMWF (Source: ECMWF Forecast Reports for 1980). 
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four days on most occasions [lo]. Examples of the current standard of prediction are 
shown in a later section. 

It is now necessary, however, to reassess the current problems in numerical 
forecasting. The predominant causes of error may no longer be those in [9]. The first 
question to be answered is whether the limit of predictability will be reached as soon 
as the quality of the initial data is improved. This question can not yet be answered. 
If not, it is necessary to decide how further improvements can be made. Ideas about 
this are reviewed in later sections. 

The plan of the rest of the paper is as follows: In Section 2 the equations in most 
common use are set out. The current state of theory on existence and uniqueness of 
solutions to such equations is reviewed. Though this full system has not been 
analysed, several other systems of equations describing fluid flow have been, and the 
results of these studies and their relevance to the atmosphere are reviewed here. Such 
studies also give guidance on the choice of appropriate numerical methods and these 
are summarised. It is well known that the flow in the atmosphere is in geostrophic 
balance almost everywhere, because of the Earth’s rotation, with small regions which 
are highly ageostrophic. In other branches of physics similar situations are common, 
for instance high Reynolds number flows behave inviscidly almost everywhere but 
viscosity is dominant in small regions. In such a situation numerical methods should 
take this structure into account. Up to the present time little progress has been made 
in taking advantage of this behaviour in the atmosphere; the most relevant work is 
reviewed in this section. 

In Section 3 the problem of constructing appropriate initial data is discussed. This 
has been a major topic of research since the review in [ 11. The difficulty is that the 
governing equations can describe a wide range of motions, from sound waves 
propagating at 300 m set - ’ to large scale Rossby waves propagating at around 
10 m set- ‘. Much discussion has centred on the existence of a “slow manifold” of 
solutions [ 1 l] describing only meteorological motions rather than sound or gravity 
waves. This concept is highly questionable mathematically, but is a convenient way 
of discussing the initialisation problem. Raw observational data may not satisfy the 
necessary balance between wind and pressure observations, and so the data has to be 
“projected” onto this manifold. For instance, insertion of observed surface pressure 
values into a model results in exciting only fast-moving gravity waves unless 
geostrophically balanced winds are also inserted. 

In Section 4 developments in the numerical solution of the forecast equations are 
discussed. Two very efficient integration schemes are described; the semi-implicit 
scheme used in the ECMWF model [12] and the split explicit scheme developed by 
Gadd [ 13-151 and used in the United Kingdom operational model. The use of 
spectra1 models has become more widespread since 1977; however, they are not 
discussed in detail here because the techniques differ little from those described by 
Bourke et al. [ 161. Various other developments are also described, for instance in the 
treatment of the upper boundary and in the use of hybrid coordinate systems in the 
vertical [ 171. 

As well as solutions of the dynamic equations, considerable effort has been put 
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into representing sub-grid-scale motions, diabatic effects such as radiation, and effects 
of moisture. This part of the development work is a major portion of the current 
effort going into weather prediction research. Certain parts of it are discussed in 
Section 5-for instance, the representation of turbulence. However, much of the 
development work is more a matter of understanding the basic physics than of 
computational techniques and therefore is not dealt with in this paper. 

In Section 6 an example of the current standard of numerical forecasts is presented. 
This is taken from a large number of cases and it is difficult to be fair in making a 
selection. Therefore, to give a broader impression of the standard, tables showing the 
forecast assessments over a longer period are also shown. Much more detailed 
assessments of model performance have been carried out in practice: A detailed 
review of the performance of the ECMWF model, for instance, has been published by 
Bengtsson and Simmons [ 7 11. 

2. THE MATHEMATICAL PROBLEM 

2.1 Equations of Motion 

The derivation of the various systems of equations in normal use is set out in [ 1,2] 
and is therefore not repeated here. We describe only the most common system and 
mention alternatives briefly. The equations are written in spherical polar coordinates 
(A, 0) for the flow parallel to the Earth’s surface and in “sigma” coordinates for the 
flow perpendicular to the Earth’s surface. The “vertical” coordinate u is defined as 
p/p*, where p is the pressure and p* the surface pressure. Under this system cr = 0 is 
the top of the atmosphere and u = 1 the Earth’s surface. Various modifications or 
alternatives to this system are discussed later. The rest of the notation is as follows: 

wind components parallel to Earth’s surface in spherical polar coordinates 
temperature 
geopotential 
specific humidity 
virtual temperature = (1 + 0.61q) T 
= (P* % P* v> 
= u . Vhu, vertical velocity in u coordinate 
= ap/at + u . V,p, vertical velocity in p coordinate 
gradient on horizontal surface 
surface stress components 
acceleration due to gravity 
= 20 sin 8 Coriolis parameter (Q is angular velocity of Earth’s rotation) 
gas constant 
specific heat at constant pressure 
radius of Earth 
= R/C, for air 
vertical heat flux 
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S diabatic heating 
L latent heat of evaporation/fusion 
P rate of precipitation of rain/snow 
A!¶ vertical moisture flux 
K coefftcient of eddy diffusivity. 

The equations of motion with the hydrostatic approximation made are then 

g+ ---& [$ (Vu) + -$ w cos B)] + ; (P*du) 

-V(f++)+--&(p*$+RTv$)=KV~p,Vu++ 

=KV.p,Vq+g$p,P. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

The term LP in (2.5) take a more complicated form in most models because of the 
effects of freezing/melting and reevaporation of precipitation. The top and bottom 
boundary conditions usually used are 

d=O at o=O,l, 

Other possibilities are discussed later. 
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2.2 Solutions to the Equations of Motion 

In this section we discuss the mathematical properties of (2.1~(2.6) and related 
systems. The relevant theoretical work falls naturally into two parts. The first 
concerns solutions to the associated initial-boundary value problem-using 
techniques extended from linear theory to smooth solutions of nonlinear problems. 
The second is concerned with the formation of singularities in the solution of the 
inviscid form of the equations and how the correct solution to the physical problem 
with very small dissipation can be obtained. 

The first part of the theory is described in detail by Oliger and Sundstrom, [ 181 
and will only be summarized here. It describes under which boundary conditions a 
unique solution of (2.1~(2.6) and related systems of equations exists. The proofs use 
ideas from linear equations with constant coefficients. These ideas have been 
generalised to apply to nonlinear equations, provided that the solutions stay smooth, 
by Kreiss [ 191. The effect of this assumption of smoothness has been studied by 
Kreiss and Browning (201, who estimate for how long solutions remain smooth given 
smooth initial data. 

Oliger and Sundstrom [ 181 discuss the existence and uniqueness of solutions to the 
meteorological equations in the context of the initial-boundary value problem. They 
write the equations in the general form 

WI + &A (w, WJ w,, + B(w) w, + C(w) = 0, (2.7) 

where A, B, and C are matrix operators and E is a small parameter. When considering 
the boundary value problem, in which artificial lateral boundaries are imposed to 
restrict the area of computation, it is necessary to avoid the formulation of spurious 
computational boundary layers. The desired solution is that which would be obtained 
if the boundaries were absent. This means that it is necessary to find boundary 
conditions which yield a unique solution to the inviscid system 

WI + B(w) w, + C(w) = 0. (2.8) 

This problem is analysed by the methods originally developed for linear constant 
coefficient problems using the theories of Kreiss [ 191. It can be shown that the undif- 
ferentiated terms do not affect the existence and uniqueness properties, so that on this 
count the presence of rotation does not affect the analysis. If the system 

w,+B(w)w,=O (2.9) 

is first-order hyperbolic, then the required boundary conditions can be identified. 
Unfortunately, (2.1)-(2.6) is not hyperbolic in the inviscid case (K = 0 throughout). 
This is because of the hydrostatic approximation. The inviscid nonhydrostatic 
equations set out in [l] are hyperbolic and so the appropriate boundary conditions 
can be identified. This is also true for the shallow water equations, which can be 
regarded as an approximation to the vertical average of (2.1 j(2.6). It is simply 
necessary to identify the outgoing and incoming characteristics, and to supply a value 
for each variable on an incoming characteristic. Though these difficulties with the 
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hydrostatic equations apply only to the case of limited regions, they are also likely to 
cause problems in global integrations if there are implied computational boundaries 
to certain scales of motion due to variable resolution. Similar difftculties arise if the 
nonhydrostatic equations are used together with implicit time integration schemes to 
handle vertically propagating sound waves. The system of discrete equations obtained 
can be regarded as an approximation to a filtered system of equations which is not 
hyperbolic. 

A limitation of this work is that it only proves the existence of a solution while it 
remains smooth. It is then necessary to find out whether and for how long it does 
stay smooth. This has been studied by Kreiss and Browning [20] for the shallow 
water equations. They use techniques extended from the linearised problem. If 
(2.1~(2.6) is linearised about a state of uniform motion and the viscous and diabatic 
terms are omitted, two types of solution are obtained, horizontally propagating 
gravity waves with phase speeds up to 300 m set - ’ and waves propagating with the 
advection speed. In the atmosphere this is almost always less than 50 m set-‘. If the 
initial data is prepared so as to exclude gravity waves and contains waves with 
wavelength comparable to the Earth’s radius, the solution remains smooth for the 
order of ten days. Estimates have also been made by Klainerman and Majda [21] for 
data including only gravity waves. The results of [20] are supported by computations 
by Sadourny [22] with the shallow water equations on a sphere, which show smooth 
solutions for about 15 days. After this time an “energy catastrophe” occurs in some 
of his integrations. It is known that solutions of the two-dimensional incompressible 
Euler equations 

au/at + u * vu + (l/p) vp = 0, v.u=o (2. IO) 

stay as smooth as the initial data for all time [23]. This system is equivalent to the 
barotropic vorticity equation 

a~~at+u~v(~+f)=o, u=vx& (2.11) 

where c is the scalar vorticity and i; a unit vector in the third dimension. This system 
is the simplest model for atmospheric flows. Two similar results have been proved for 
three-dimensional quasi-geostrophic equations, written here in terms of a stream 
function v and Cartesian coordinates (x, y, z) 

u=-WY, u=wx, 

Q = v/xx + vyy + P - ' @WA 7 
DQ/Dt = S, 

@=w,, 

w = -a(DO/Dt - H), 

w=o at z = 0, h, 

u-n=0 on lateral boundaries. 

(2.12) 
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Here a is the specific volume and S and H are source terms for the potential vorticity 
Q and potential temperature 0. The results are described by Bennett and Kloeden 
[24]. They show that solutions of (2.12) remain as smooth as the initial data for all 
time if the potential temperature is specified on z = 0 and h, and if the flow is 
contained in the x and y directions. It stays as smooth as the data for periodic 
boundary conditions in x and y with rigid boundaries at z = 0 and h for a finite time 
T inversely proportional to the gradients in the initial conditions. It has been shown 
by Williams [25] that discontinuities can form in the solutions of (2.12) with other 
choices of boundary conditions. 

The next system that has been analysed is the semi-geostrophic system discussed 
by Hoskins [26]. In this system the momentum components U and V in (2.1) and 
(2.2) are replaced by their geostrophic values -(jb)-’ p*(@/%) and (& cos 0))’ 
p,(@/aA). It has been shown that this system, without viscous terms, forms discon- 
tinuities in velocity with associated infinite vorticities. The crucial difference is that a 
term (c + f) & . Vu appears in the semi-geostrophic vorticity equation, rather than 
justfi . Vu as in the quasi-geostrophic system. 

Once we move away to the full inviscid system, the evidence is that the solutions 
will still break down in a finite time. The remark in [ 181 that the presence of rotation 
does not affect whether the solutions stay smooth, but only the length of time that 
discontinuities take to form, means that we can consider various results obtained in 
the nonrotating case. The shallow water equations in one dimension form a standard 
example of a discontinuous solution, the hydraulic jump. In more than four 
dimensions, solutions of these equations with finite initial energy stay smooth for 
almost all data (Klainerman [27]). The important cases for meteorology are in two 
and three dimensions where least is known. John [28] has shown that discontinuities 
are likely to form in the three-dimensional case. 

These results apply to purely hyperbolic systems of wave equations. However, 
(2.1~(2.6) do not reduce to such a system because of the hydrostatic approximation, 
(2.3). Instead of (2.3), we can make the anelastic approximation 

v * @u) = 0. (2.13) 

Since the Mach numbers are small, some aspects of the solutions may be similar to 
those of the three-dimensional incompressible Euler equations (2.10). It has been 
suggested by two separate numerical investigations, but not proved analytically, that 
the solution to these equations can give infinite vorticity in a finite time (Morf et al. 
[29], Chorin [30]. The physical effect is that vortex lines are stretched an infinite 
amount in a finite time. Chorin [31] has also shown how the solution can evolve 
before the blowup. In order for energy to be conserved, the vortex lines must become 
entangled so that there is cancellation of the induced velocity fields. This means that 
in the presence of viscosity, the dissipation is much more effective at preventing the 
blowup than a simple consideration of the balance between the stretching and viscous 
terms would suggest. This has to be taken into account when attempting to prove that 
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solutions of the three-dimensional Navier-Stokes equations stay smooth for all time 
for arbitrarily large Reynolds number. 

Though it seems that the inviscid form of the atmospheric equations can yield 
infinite vorticities in a finite time, the physically dominant cause of breakdown is not 
yet clear. Different mechanisms are more important at different horizontal scales. The 
model described by Hoskins can predict discontinuities at the boundaries. The scaling 
assumptions in this model break down first where the Richardson number 

g ao au 1 -- - 
It ) 0, az az 

becomes small, Under these conditions turbulent mixing occurs. This mixing may be 
well described by the incompressible Euler equations (2.10), which also have a 
tendency to generate infinite vorticity. At the smallest scales, viscous dissipation will 
act, enhanced by the tangling of the vortex tubes. 

2.3 Consequences for Numerical Solution of the Equations 

The problem with obtaining numerical solutions of (2.1~(2.6) is that the scales on 
which mixing occurs are several orders of magnitude smaller than those that can be 
resolved. This is a standard situation in mathematical modelling. It is necessary to be 
able to show that the inviscid equations possess a discontinuous or singular 
generalised solution which can be proved to be the limit as the viscosity tends to zero 
of a viscous solution. This has been shown for a wide range of one-dimensional 
problems in gas dynamics, combustion, and oil reservoir engineering (see, for 
instance, Chorin and Marsden [32]). In more than one dimension little is known even 
for the simplest problems. In cases where it has been possible to construct a singular 
solution to the inviscid equations which corresponds to observed physical behaviour, 
it has been necessary to choose a form of the equations which conserves the correct 
physical quantities and to impose an “entropy” condition to make the solution 
unique. It is then possible to approximate it numerically, taking care that the approx- 
imate solution cannot converge to a solution which violates the entropy condition. 
This approach has only been fully developed for one-dimensional problems, for 
instance by Majda and Osher [33]. In the meteorological case, where the discon- 
tinuities are much more complex, it is not yet known whether a physically valid 
discontinuous solution to the inviscid equations can be constructed. In the case of the 
three-dimensional incompressible Euler equations studied by Chorin, it does not seem 
likely that this approach is possible. Under present circumstances there is no alter- 
native to adding artificial viscosity to the solution and hoping that the resulting 
smooth solution approximates the right physics. 

There are, however, certain precautions that must be taken with the numerical 
method. The breakdowns of the solutions to inviscid forms of the equations all take a 
definite time to occur from given data. A numerical approximation to the solution 
should not exhibit a faster breakdown. For instance, consider approximations to 

au/at = u(au/ax) 
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Using the standard notation 

Ax = +(A (x + Ax) + A (x - Ax)), 

d,A = A(x + &lx) - A (x - fh), 

d,A=dx-‘(A(x+fdx)-A(x-&)); 

if (2.14) is approximated by 

6, I’ = us, 2, (2.15) 

it is known that the truncation error contains terms which form an approximation to 
the equation 

au/at = u2, (2.16) 

which has a solution that becomes infinite at t = 1 for initial data u = 1 (Gary [34]). 
The solution of (2.14) merely becomes discontinuous. Thus using (2.15) can lead to 
spurious rapid error growth. This is avoided by using the scheme 

Similar schemes have been reviewed by Morton [35] and shown only to produce 
error growth when au/ax > 0. the solution stays as smooth 

as the data, it is important to ensure that the numerical solution also does so. For 
Eq. (2.1 l), the crucial property is that the absolute vorticity is convected by the 
motion and can only take on values present in the initial data. This is how the 
mathematical existence proof of Kato [23] is constructed. Numerically this can only 
be ensured by using a Lagrangian method. In an Eulerian scheme the best that can be 
done is to conserve the total enstrophy, the integral of the square of the absolute 
vorticity. Since the grid is finite, this will ensure that the vorticity stays bounded, 
though not necessarily by its initial values, and that the solution will stay smooth. 
Thus, for solving (2.11) it is appropriate to use the enstrophy conserving schemes of 
Sadourny [ 221, and for solving (2.12) the potential enstrophy conserving scheme of 
Arakawa [36]. These schemes can also be used for (2.1~(2.6) as convenient ways of 
suppressing spurious error growth, though any other scheme which suppresses it until 
the true inviscid solution breaks down should be equally suitable. 
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3. INITIAL AND BOUNDARY CONDITIONS 

3.1 Initialisation 

There have been substantial recent advances in the techniques used to calculate 
initial data for forecasting models. Two major areas of development are the nonlinear 
normal mode initialisation technique of Baer and Tribbia [37] and Machenhauer 
[38], implemented in a large model by Temperton and Williamson [72]; and the 
bounded derivative method of Kreiss [40], as described in detail by Browning et al. 
[39]. The background to these methods has been discussed in the previous section. A 
much more detailed description of the normal mode method is given in [2]. It is 
assumed that it is possible to find a solution of (2.1)-(2.6) which essentially only 
contains waves moving with the advection speed and does not contain gravity waves. 
This hypothesis is often discussed in terms of a “slow manifold” (Leith [ 111). It is 
unlikely that such a solution exists mathematically, except possibly as a singular 
solution. However, if no attempt is made to eliminate gravity waves from the data, 
any forecast is contaminated by large unrealistic oscillations. It is not sufficient just 
to eliminate all gravity waves from the initial data by a linear normal mode 
technique, since they can still be generated by the nonlinear terms which were 
neglected in calculating the normal modes. Therefore it is necessary to eliminate this 
initial growth of gravity waves as well. This can be done by an iteration technique, as 
described by Baer and Tribbia [37]. Alternatively, since the most troublesome gravity 
waves have a high frequency, they can be excluded by making the initial time 
derivatives of the variables up to a certain order small. This is the method proposed 
in [40]. Suppose we have a pair of linear equations which admit wave solutions of 
two different speeds: 

; = A g + B(u, u); Ul u= 
( )* u2 

We suppose A has two eigenvalues A,, 1, with associated eigenfunctions e,, e,. 

Suppose I4 I g IA21 and that A, is the eigenvalue of physical interest. An arbitrary 
initial state u can be written in the form u = ui t u2 with ui = ale,, u2 = a2e2. The 
desired initial state for the linear problem would be a,e,. Define projections P, and 
P, by setting P, u = u,, P, u = u2. Seek a solution containing essentially only the 
second eigenvector for nonlinear problem (3.1). The normal mode approach takes 
a2e2 as the first guess to the desired initial state. Then, for a general iterate set 

P, 2 + B&-l, d-l) 

so that 

A&4,), t PIB(u”-l,Un-‘) = 0. (3.3) 
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The convergence properties of this iteration are discussed in [37]. In practice a single 
iteration is enough to make a useful improvement to the early stages of a forecast and 
further iterations have little effect. 

The procedure of Browning et al. [39] is similar but more general and can also be 
used as a forecast method. The form of Eqs. (3.1) implicitly assumes that normal 
modes can be readily calculated. In other situations we can write the basic equations 
as follows: 

au ~+C(“,“)+E-lDg=O, (3.4) 

where E is a small parameter. The term C governs the “slow” motions and D the 
“fast” motions. It has been assumed that all the nonlinear terms are contained in C. 
Then the “bounded derivative” approach, given an arbitrary initial state u, is to 
require 

ak/at” = o( i ) at t=O 

up to any desired n. The condition for n = 1 gives 

D(au/ax) = O(E) at t=O. (3.5) 

Replace E-‘D(aU/ax) by E, where E is a smooth O(1) function at t = 0. In order to 
determine it, and hence the desired initial values of U, we set 

ah/at2 = o(i) at t=O. (3.6) 

Since it is assumed that u is smooth at t = 0 and thus h/at and au/ax are O(l), (3.6) 
means that aE/at must be 0( 1) at t = 0. However, we have 

aE -=e 
at 

=--E-‘D+,u)+E-‘E) 

so 

aE 
cat=-D&u)---E-IDE. (3.7) 

Since, by assumption, aE/ax is O(1) at t = 0, (3.7) can only be satisfied for a 
special choice of E which involves C(u, u) at t = 0. It is not possible to illustrate the 
procedure any further with the general equation (3.4). It is worked out fully for the 
shallow water equations in [39]. The mathematical theory continues by proving that 
if 8%/W is 0( 1) for all n up to a value N, then bounds can be established on the 
solution for a certain time T. The method depends on the assumption of initial 
smoothness of the data which may not be strictly correct but does nevertheless lead 
to a useful method of suppressing excessive “noise” in forecast integrations. 
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3.2 Boundary Conditions 
Ideal lateral boundaries may be present in forecast models in order to limit the 

computational effort. However, as discussed earlier, primitive equations (2.1)-(2.6) 
are ill posed with any local choice of lateral boundary conditions. Boundary 
conditions for the nonhydrostatic equations can be chosen by the methods of [ 181. 
Recent work by Gottlieb et al. [41] shows the importance of using the correct 
characteristic boundary conditions. In practice, however, most limited area models 
use enhanced artificial damping at the boundaries. Similar problems apply in nested 
grid models where a series of successively smaller grids of finer resolution are used 
nearer the area of interest. This is particularly important in tropical cyclone models 
where the smallest grid must be moved with the cyclone. 

It is also important where the finest grid is not to be moved during the forecast but 
may be in a different place on different days according to the current weather 
situation. Many operational forecasting centres now have such flexible limited area 
models. Effective techniques have been developed for allowing information to pass 
through the boundaries in both directions without generating excessive small scale 
noise. Some examples are the mass, momentum, and internal energy conserving 
procedure of Kurihara [42], a boundary relaxation scheme to allow a grid-point 
model to be nested in a spectral model [SJ, and a system using three levels of grids 
which are integrated simultaneously with the necessary extra values created by inter- 
polation (681. These procedures, and the great variety of others that are used, are all 
adhoc devices, because of the impossibility of imposing correct lateral boundary con- 
ditions. 

The problem with the upper boundary condition is that while the mass of a column 
of air is finite, its top is not well defined. If the equations are written in pressure or 
sigma (normalised pressure) coordinates, then the usual upper boundary condition is 

Dp/Dt=O at p=Q or Da/Dt=O at o=O. (3.8) 

Though these conditions may appear superficially to be applied at infinity, they have 
the effect in practice of a rigid wall at a value of pressure halfway between zero and 
the top model level (Kirkwood and Derome [43]). It is therefore desirable to replace 
(3.8) with an absorbing upper boundary condition, perhaps in the manner of Enquist 
and Majda [44]. This possibility has been studied by Davies [45]. Assume that the 
governing equations can be separated into horizontal and vertical structure equations. 
The latter equation takes the form 

where 

x,, + J2x = 0, (3.9) 

AZ = (KH/h) - f, x = (P’/PJ exp(bz * 1, z* = z/H, 

H is the atmospheric scale height, h is the separation constant, K the horizontal wave 
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number, p a perturbation pressure, and p,, a basic state density. We have to determine 
1 as an eigenvalue of (3.9) subject to the boundary conditions 

w’ = 0; i.e., (i+ (f-K))x=O at z = 0, 

w’ = f(p), i.e., s (E+ (+-X))*=-T*x at z=ztOp, (3’1o) 

where I’* is an operator to be defined. This problem is studied in [45]. Consider 
waves with x proportional to exp i(mx + ny - 6t -AZ). If an absorbing upper 
boundary condition is used for (3.9), its effectiveness is shown to depend on 
designing the operator r* appearing in (3.10) such that r* z &J for the range of 
atmospheric wave motions that propagate energy vertically through the level z = ztop . 
The procedure of [44] would start from the nonlocal condition 

axjaz = -iAx at z = ztop 

and derive a local approximation to it from an equation for L In [44] an expansion 
about normal incidence was used. This limit is inappropriate here, since it 
corresponds to nonpropagation in the vertical. It is therefore suggested that the 
appropriate expansion is in powers of $A, using (3.10) as the first local approx- 
imation. 

Despite these theoretical developments, it is still common to use (3.8) as the upper 
boundary condition in large forecasting models. One reason for this is the limited 
impact on forecasts that results from inserting extra layers at the top (e.g., 1461) 
which suggests that spurious reflection of energy is not a primary source of error. 

4. NUMERICAL SOLUTION TECHNIQUES 

4.1 Introduction 
Numerical techniques used in atmospheric models have traditionally been 

designed assuming that the equations have smooth solutions, and deal with any 
discontinuities that occur by means of artificial viscosity. The emphasis has been on 
developing efficient schemes, bearing in mind the wide variation of signal speeds in 
the equations, with little implicit damping and accurate phase speeds. These have 
been chosen so that perturbations cannot grow on a faster time scale than in the 
continuous equations. These considerations have led to the use of neutrally stable 
centred finite difference schemes by most workers. Spurious error growth is removed 
by using averaging techniques in calculating nonlinear terms, and artificial viscosity 
is added to deal with regions where the solution of the inviscid equations breaks 
down. Schemes satisfying these requirements are extensively reviewed in [ 1, 21. A 
wide variety of techniques are used by different groups. The use of schemes with very 
efficient time integration procedures such as semi-implicit or split explicit methods is 
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gradually becoming more popular. Spectral models have become more widely used in 
recent years for global forecasting. The results are broadly similar to those of finite 
difference models. A detailed comparison of the ECMWF grid point and spectral 
models by Jarraud et al. [55] shows that the spectral model gave a small but distinct 
improvement in forecast skill. Recent advances in programming spectral models have 
made them as, or more, efficient than finite difference models. At ECMWF a spectral 
model with a maximum total wave number of 63 takes a similar amount of 
computing to a 192 x 96 latitude longitude grid-point model. The use of these models 
can thus be expected to spread. The techniques are described in detail in [2, 161, and 
it seems unnecessary to repeat them here. 

Full descriptions of a semi-implicit and a split explicit difference model are given, 
as certain of the detailed ideas can be applied more widely. The vertical differencing 
schemes described can also be applied in models with a spectral representation for the 
horizontal fields. The scheme described in [50] for solving the implicit parts of the 
semi-implicit schemes in three-dimensional models by decoupling the equations into a 
set of two-dimensional problems can be applied to three-dimensional anelastic models 
used for smaller scale atmospheric modelling (Clark [66]). The same technique can 
be used for three-dimensional incompressible flows. The split explicit scheme is 
applied using the Lax-Wendroff method in [ 131, but can also be used in a leapfrog 
model, as in the fully compressible model of Klemp and Wilhelmson [67]. Thus it 
has been possible to adapt many of the great variety of atmospheric models to allow 
the use of efficient integration schemes. Even with faster computers, it is necessary to 
use such schemes if large models are to be implemented in real time. For instance, 
difficulties in converting the U.S. National Meteorological Center grid point model to 
use such a scheme led to the choice of a spectral model, and have delayed the 
operational implementation of the very flexible nested grid model of Phillips [68]. 

4.2 The ECMWF Grid-Point Model 

This model is described in detail in [ 121, which includes a full bibliography. 
References to detail of the formulation are therefore not given in this section. The 
model uses the standard governing equations (2.1)-(2.6) in sigma coordinates. The u 
momentum equation (2.1) is written in the form 

au I 
---zp*vcose+ 
at cos e &-&+E)+ 

SF,,, 

with a similar equation for v. Here Z is the potential absolute vorticity 

& (f + -L (” - 2 (24 cos e)) ) 
acose aA ae 

(4-l) 

(4.2) 

58l/SO/l-2 
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B GRID C GRID 

FIG. 2. Nomenclature for different staggered grids. 

and E is the kinetic energy per unit mass 

1 
( 

1 
- u*+- 
2 cam e v*cose . 

1 
(4.3) 

Here F, denotes all the friction terms. The equations are solved on a latitude- 
longitude grid using 192 points round each line of latitude and 96 points between the 
north and south poles. There are 15 levels in the vertical at values of Q of (0.996, 
0.967, 0.914, 0.845, 0.765, 0.678, 0.589, 0.500, 0.415, 0.334, 0.260, 0.193, 0.132, 
0.077, 0.025). The unequal spacing is designed to give high resolution in the 
boundary layer and near the level of maximum wind (a = 0.1 to 0.3). The variables 
on the grid are staggered. The horizontal wind components, temperature, and 
humidity are kept on the main levels, and the vertical velocity and geopotential at 
intermediate levels. The horizontal grid arrangement is the C grid (Fig. 2) as 
described in the article by Arakawa and Winninghof in [ 11. The finite difference 
scheme is summarised below using the standard notation defined in Section 2. Special 
care is required in choosing forms for the vertical differencing because the grid is 
nonuniform in o. Equation (2.3) is approximed by 

6 k+1,2 =h + ,f RT,@, In u),, (4.4) 
I=k+l 

where 4% is the value of geopotential at the Earth’s surface. Equation (2.4) is approx- 
imated by 

Vertically integrated forms of (4.5) are used to derive d at each level and a vertical 
integral from u = 0 to 1 is used to give i?p,/at independently of d. This form ensures 
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mass conservation. The u momentum equation (4.1) is approximated, except at the 
poles, by 

au 
Zt-&(VcosAsZe)+~~*(~~+E) 

+- atze 6,(hp,)+ (pTA~,~)-‘p&$ 
A 

~,u~=F,,~ (4.6) 

where 

Z=(p*acOseAe)-’ (afcose++Au-6e(ucose)), (4.7) 

E = j(Tli’ + (l/cos 0) me). (4.8) 

An equivalent form is used for the v momentum equation. This scheme conserves 
potential absolute enstrophy (p*Z2) and potential vorticity under the effect of the 
horizontal advection terms. It does not conserve energy. An alternative version which 
also conserves energy was found to have excessive truncation error and gave 
unrealistic results. This problem was first analysed by Hollingsworth and KHllberg 
[47] and later by Mesinger [48], who shows how it can be avoided. The temperature 
equation is approximated in advective form rather than flux form (2.5). 

(U6,TA + V cos 86, T’)) 

+ (A,u)-lp*~u - (4.9) 

+ 5 (UP S,(ln p*) ‘) + V cos BTe 6,(ln p*)’ (4.10) 

and F, includes all the frictional and diabatic terms appearing on the right of 
Eq. (2.5). The form of (4.10) ensures that transformations between kinetic and total 
potential energy exactly cancel if we define 

I/u = (A,o)-’ A, In u. (4.11) 

Moisture equation (2.6) is approximated in a similar way to (4.9). These schemes 
ensure that p* T2, p* q2, q, and total potential energy are individually conserved under 
advective processes. 
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At the poles the schemes have to be modified. The temperatures are kept at the 
poles. The v component of velocity is kept a half grid length away. Equation (4.5) is 
modified so that p* at the pole changes as a result of the total mass flux through the 
innermost latitude circle. Thus 

3P* at + (SIGN) v cos qi + (6, u) - l 6,(p* 6) = 0, (4.12) 

where N is the number of points where V is defined and 

e=N (+zAA)cos (~-~)~. 

Here SIGN = +l for the North pole and -1 for the South pole. Vertical integrals of 
this equation are used to find d and ap*/lft individually as before. The u component 
of velocity at the poles is meaningless and must be replaced by a polar zonal mass 
flux U, so that the standard finite difference equation for V at the rows adjacent to 
the pole can be used. Define the kinetic energy per unit mass E at the poles by 

E= (&OS (+-$))-I $, -$OS (t-G). (4.13) 

The zonal mass flux U is not a true prognostic variable and is determined from a 
representation of the polar boundary conditions; 

fUAe(Ui+ l/2 - Vi- ,,2) + (SIGN) Vi cos Bu AtI 

= f (SIGN) 5 Vi cos Bu Al, 
i=l 

(4.14) 

The advection term in (4.9) is modified in the same way as in (4.12). 
The time integration scheme is carried out by the semi-implicit scheme developed 

by Robert et al. [49]. The three-dimensional version is more fully described in 
Hoskins and Simmons [50]. Only linearised terms representing gravity waves are 
treated implicitly. The scheme can be written as follows: 

6,(lnp,)l+(p*acose)-1(U~p*++cosef3,p*e) 

+ (&a)-’ (6,X1) + (a cos e)-’ (6*zi2’ + 6,fT2’ cos e) = 0, 

6,C’ + (a cos q-1 (6,poZ1 + RToG,(inp,Zt)) 

+ (a cos 0)-l R(?;, - T,) 6,(lnp,) = a,, 

(4.15) 

(4.16) 
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+ (A&J)-‘(dA,(T- T$) - cr’K(T- T&d + a(btlnp,l),o) = a,, (4.17) 

where 

(6,t),+(p*acose)-‘(6,u+6,Vcose)+(A,a)-’A~=0. (4.18) 

There is also an equation for Y. The terms a,,, a, represent all the other terms in 
the equations. The temperature T,, about which the system is linearised is a constant 
300” K. It has been shown (Simmons et al. [5 I]) that if (4.15)-(4.18) are linearised 
about too cold a basic state, the system becomes unconditionally unstable. 

The linearised system is solved. by eliminating all variables at time t + At except 
the discrete divergence defined as 

d=(acose)-‘6,ut(acose)-‘6,vcose. 

The equation for this takes the form 

6,d’ - At’ G(a cos 0) - ’ (a,((~ cos 6) - ’ 6,6,,(d) 

t 6,(a - 1 cos 66,6,,(d))) = 0, (4.19) 

where G is an n x n matrix, n is the number of vertical layers in the model. It 
expresses the vertical coupling of the equations due to the vertical integrations of 
hydrostatic equation (4.4) and continuity equation (4.5). 

Equation (4.19) is solved by diagonalising the matrix G by multiplying by the 
matrix E of eigenfunctions of G. The resulting discrete approximation to a two- 
dimensional Helmholz equation is solved by Fourier transform in the longitudinal 
direction and Gaussian elimination in the latitudinal direction. 

The remaining problems in making the scheme efficient are to overcome the time- 
step restriction caused by the convergence of meridians at the poles and to add an 
artificial viscosity term to stabilise the solution. These problems are both solved by 
using an implicit fourth-order diffusion term. Given a provisional value uT+~~ from 
(4.16), set 

u t+At = %*+At - (4.20) 

A similar procedure is carried out in the equation for V, T, and q. Operationally, 

rcl = (a Aj1)3, 

Note that the longitudinal term 6: is treated implicitly. The implicit equation is 
solved by a Fourier transform. The latitudinal term is added on using a forward time 
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step. This scheme avoids the need for any further smoothing in high latitudes. 
Equation (4.20) is evaluated near the poles using a reflective boundary condition. 

This completes the description of the numerical method used to solve (2.1)-(2.6) in 
the ECMWF model. The techniques used to represent the other processes, surface 
exchanges, convection, and radiation are very elaborate but are outside the scope of 
this review. These are subject to frequent change, details can be obtained from the 
current internal reports. The model uses a 15 minute time step and takes 20 CPU 
minutes to integrate one simulated day on the CRAY-1. 

4.3 The Meteorological Ofice Model 

The other numerical scheme that we describe is that used in the current 
Meteorological Office model. This model is required for a different purpose than the 
ECMWF model, in that its forecasts have to be available within 4 hours of data time. 
The ECMWF model is not run until 10 hours after data time so that observations are 
available from the whole of the world and a high-quality global data set can be 
constructed. 

The model uses a splitting technique developed and analysed by Gadd [ 13-151 and 
discussed further by Carpenter [52]. The equations are solved on a latitude-longitude 
grid with the same longitudinal resolution as the ECMWF model (192 points) but 
with 60 points between equator and pole. The model is implemented on a CYBER 
205, and a major design feature of this vector computer is that the significant 
increases in CPU speed over earlier serial computers are accompanied by only 
relatively modest increases in I/O speed. Thus the model is chosen to be entirely 
contained in memory in forecast mode. This gives the split explicit scheme an 
advantage over that used in the ECMWF model because it requires only one time 
level of data storage. For some applications the model is not run for the whole globe 
but only for the region north of 30” S. In this case, a high diffusion zone is used near 
the southern boundary to prevent reflection of energy. 

The equations are solved in sigma coordinates as in the ECMWF model. Fifteen 
levels are used, but are slightly differently spaced because precise information is 
required at certain standard levels for aviation. Those used are (0.997, 0.975, 0.935, 
0.870, 0.790, 0.690, 0.590, 0.490, 0.390, 0.310, 0.250, 0.190, 0.125, 0.065, 0.025). 
The variables are staggered on the grid differently from the ECMWF model. The 
geopotential is calculated at a full level, though the vertical velocity is calculated at 
an intermediate level. In the horizontal, the B grid (Fig. 2) is used. This is because it 
has been found that the time truncation error due to the splitting is less damaging in 
practice with this arrangement [ 131. 

The equations are split into two parts, referred to below as adjustment and 
advective parts. Each major time step of 15 minutes consists of three 5 minute 
adjustment steps, carried out by a forward-backward scheme, and one advection step, 
carried out by a two-step Lax-Wendroff method. The advective rather than the flux 
form of the Eqs. (2.1)-(2.6) is used. Potential temperature 0 is used as a variable 
instead of T. The splitting is as follows: 
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Adjustment: 

(4.21) 

T+d$=O, (4.22) 

8P* 1 
at+-- ( 

E+&Ose) +$,d)=o, 
aces e aA ae 1 

(4.23) 

(4.24) 

together with equivalent parts of the equations for u and q. 

Advection and other terms: 

au u au v au uv tan e 
at+iG&TZ+T+a a =F,, (4.25) 

together with equivalent parts of the equations for u and q. 
The adjustment terms are solved by the forward-backward scheme as follows: 

(4.27) 

with a similar forward step for (4.22) and the q equation. 

ut+At - u’ = At 
[ 
+t + yt+At) _ zAe soul0 

- & (Fe + CpaK o’+d’* a,(lnpyA”)] (4.28) 

with a similar equation for U. Note that Eq. (4.28) is not fully backward, and the pair 
(4.27), (4.28), if applied indefinitely, would be unconditionally unstable because of 
the treatment of the vertical advection term. However, the stability of the entire 
scheme depends on the eigenvalues of the operator defined by three applications of 
the adjustment equations followed by one application of the advection equations. In 
practice, it is found that the small potential computational instability from this term 
is compensated for elsewhere, perhaps by the damping implicit in the advection 
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scheme. The centred implicit treatment of the Coriolis term in (4.28) is required for 
successful integrations of more than a few days, because errors from the slow 
computational instability of an explicit representation tend to accumulate in time. 

The vertical differences that appear in (4.22) and (4.24) require care because of the 
unequal spacing of levels, as in the ECMWF model. They are calculated as follows to 
ensure balancing of the energy conversions: 

wmJ) = @k&k+ l/2 + Pkek- 1,2)(ak + Pk)C (4.29) 

where 

‘k+l/Z = 6k+1,2(0k+, - @k)@k+, - %-‘, (4.30) 

($y +RTklog (5) 

The horizontal differencing scheme is prone to a weak grid separation effect since the 
B grid is well known to support two independent solutions. This is overcome by a 
method devised by Mesinger [53] and extended by Janjic [54]. A term 

w(dt2/4)(V: - Vi) n (4.3 1) 

is added to (4.27), where 

vp= a2 ,Ls2 e &G6,$) + mz% lnP*)) 

+ a2 ,h2 e @,(cos 6&T&j) + G,(cos Oa’P,‘S, lnp,)), 

e* 
v?Jz= a2 ,b2 e NdP, GJe ‘) + ~A<~ 8% la 1) 

AA 
+ a2 cis e (b,(cos tip, s,i” ’ + G,(cos flP, 27” 6, In p* ) 

with 

The maximum value of w that can be used is 0.25, and this value is used at present. 
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The advection terms (4.25), (4.26) are approximated by 
Wendroff scheme as follows: 

23 

the two step Lax- 

(4.32) 

--a* Ut+At = u’ - At ((1 + cm* - c[(l -b) a,,u* + b&,U3*]) 

--I* 

+& ((1 + C)6,ua-C[(l -b)63,UA + bdj*L’*]). (4.33) 

The constants b and c are set to f and i(l -,u’), where the Courant number p is 

u2 At2 
a2 cos’ BAA2 

(4.34) 

As discussed in [52], a value of c = f(1 -p*) would give fourth-order phase speeds. 
Due to error cancellation and the effect of errors in scales closer to the grid length, 
the larger value of c was preferred. However, the choice is found to make almost no 
visible difference with the horizontal resolution used in this model. At the poles the 
temperature and pressure are stored, but not predicted independently. At each time 
step the value is set to the mean of the surrounding points. Equation (4.33) is 
simplified near the pole with c set equal to zero. Otherwise the difference schemes are 
unchanged. 

This difference scheme does not exactly conserve any quadratic quantities, unlike 
the ECMWF scheme. The form used for the vertical differencing ensures that the 
conversions between kinetic and potential energy balance. Practical tests of the 
scheme suggest that, for forecasts for a few days ahead, no serious deficiencies in 
conservative properties arise. The smoothing terms KV . p*Vu that appear in 
(2.1)-(2.6) are approximated by a special scheme. The model is written in sigma 
coordinates, and sigma surfaces slope steeply near regions of steep orography, so that 
a diffusion operator on a u surface does not carry out horizontal smoothing. Because 
the atmosphere is strongly stratified in the vertical this can lead to errors, particularly 
in the temperature. Therefore the formula 

v2uI‘v*u-2v 2 
P (I (I 

( ) au 
a V lnp, (4.35) 

is used, where the suffixes p and c refer to differences taken on p and u surfaces. 
Equation (4.35) only contains the largest necessary correction term, namely, that due 
to the local slope of the o surface, and the neglect of the more complicated curvature 
terms may give rise to errors where there are rapid changes in the slopes of the 
mountains. 
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In order to overcome the problem of the convergence of the meridians near the 
pole, Fourier filtering is used. A discrete Fourier transform is carried out on the time 
increments at each line of latitude and the amplitudes of all waves whose wavelengths 
are shorter than a preset limit are set to zero. Separate filtering is carried out for 
increments from the adjustment and advection terms. If a given wave is filtered from 
the adjustment increments, it must also be filtered from the advective increments. The 
normal area filtered extends to 45” N for advection and 60° N for adjustment, but can 
easily be varied. 

This completes the description of the numerical methods used in the model. The 
schemes used to represent the additional physical effects are very elaborate, but 
outside the scope of this article. Full details of these procedures will be published at a 
later date. The version extending to 30” S at present takes 2f minutes of CPU time 
per simulated day on a CYBER 205. 

4.4 Further Developments in Numerical Techniques 

In this section we briefly review some other current developments in numerical 
techniques. 

The use of semi-implicit or split explicit time integration schemes as described 
above has led to considerable increases in efficiency and allows time steps of up to 
15 minutes to be taken with a horizontal grid length of 150 km. Robert [56] has 
devised a method for the shallow water equations which allows even longer time steps 
by using a Lagrangian-rezoning technique for the vorticity advection and the existing 
implicit treatment of the divergence terms. It is possible that such methods could be 
extended to treat the advective terms of the full equations with a splitting technique. 
Many advection schemes developed for other physical applications, however, have 
been unsuccessful when used for the meteorological problem because they damp or 
distort sinusoidal waves with a wavelength of less than about ten grid lengths. While 
some damping is required in practice, the amount that has to be added to a neutrally 
stable centred scheme like that in the ECMWF model is much less than that present 
in schemes designed for step function data. The amount present in the staggered two- 
step Lax-Wendroff scheme appears to be the most that can be tolerated, the 
unstaggered version tested by Grammeltvedt [57] is not accurate enough. 

There are rather more current developments in the vertical approximation scheme. 
The sigma coordinate system provides a very convenient way of handing complex 
terrain, but may also lead to truncation errors. A recent discussion of these is given 
by Mesinger [74]. This may be particularly serious at high levels in the atmosphere 
where the true flow is horizontal. There may also be errors caused by the averaging 
of topographic heights over grid squares. This results in lowering the maximum 
heights and the blocking effect of ridges may be underestimated. An alternative 
method, using a rigid wall to represent the mountain, has been studied by Egger [58]. 
The effect of any given mountain range may well depend on whether the wind blows 
across or parallel to the ridges, and a more complete representation than just an 
average height may be required [59]. 

The problem of the coordinate surfaces not being horizontal at the higher levels is 
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easier to deal with. Simmons and Burridge [ 171 have developed a hybrid sigma- 
pressure coordinate system for the ECMWF model. This has been tested by Simmons 
and Struting [60]. At the same time they have implemented changes to the vertical 
finite difference scheme in order to achieve energy and angular momentum conser- 
vation with the new coordinates. These changes can be summarized as follows: 
Consider a general terrain-following vertical coordinate q which is a monotonic 
function of pressure p and dependent on the surface pressure p* . Equations (2.3) and 
(2.4) become 

The model variables u, V, and T are carried at unequally spaced levels denoted by an 
integral suffix, and values of q and thus the pressure are calculated at intermediate 
half levels. As with sigma coordinates, care is required because of the unequal 
spacing, and it is necessary to make a special choice of the values of q at the half 
levels. In order to conserve energy, the vertical advection terms in (4.36) and the 
other equations of motion are approximated by 

where AP, is (P~+,,~ - pk.-&. Equation (4.37) is approximated by 

4 k+l/Z=$* +,=$+,R=&n rE) (4.39) 

which is in a similar form to (4.4) in u coordinates. Angular momentum conservation 
is achieved by setting 

(4.40) 

in the pressure gradient term in the momentum equation. The parameter ak is chosen 
to be 

' - (Pk- &P/c) in(~k+,,2/~k-l,2)~ (4.4 1) 

which ensures that (4.40) reduces to (4.6) in sigma coordinates. The rest of the 
scheme required to achieve exact balance of the energy conversion terms and 
accurate calculation of pressure gradients over steep topography is set out in [60]. 
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All the finite difference expressions used involve values of pressure only at half levels. 
The values of p at full levels can be defined, for instance, by 

AP, 
Pk = ln(pk+ 1Ihk-1/d 

k> 1, 
(4.42) 

Other options are possible. This finite difference scheme can be implemented in a 
semi-implicit model by constructing a linearised system similar to (4.19). Some of the 
hydrostatic equation now has to be evaluated explicitly, since (4.37) is nonlinear. 

The vertical coordinate r7 to be used in practice is selected by experiment, usually 
to give the upper levels of the model on or near constant pressure surfaces, and 
smoothly varying layer thicknesses near high topography. 

The upper boundary condition used with this scheme is rj = 0 at q = 0. This is 
similar to the condition normally used in sigma coordinates. It would therefore be of 
interest to combine this scheme with the absorbing upper boundary conditions 
discussed in the previous section. 

5. REPRESENTATION OF SMALL SCALE PROCESSES 

It is common in computational fluid dynamics to be unable to resolve the viscous 
dissipation scale. In weather prediction, however, this scale is not resolved by many 
orders of magnitude, and a great many features of the observed flow are not resolved 
either. It is therefore necessary both to add artificial viscosity to the basic inviscid 
equations and to insert extra terms to represent the mean effect of unresolved 
motions. It has to be assumed that the results do not depend on the detail of the 
unresolved scales, and this assumption is one of the limiting factors on predictive 
skill. 

It is clearly important to determine whether the solutions derived by adding 
artificial viscosity to the equations and solving on a coarse grid actually converge to 
the inviscid limit of Eqs. (2.1~(2.6), and whether such a limit describes the observed 
behaviour of the atmosphere. These questions have not yet been answered, or even 
studied very much. In this respect meteorology lags well behind some other branches 
of computational physics. Some work has been carried out on studying forecasts 
using very fine grids. These studies inevitably have had to be carried out on limited 
areas, for instance the U.S.A., and the results can be affected by boundary conditions 
and by the lack of high resolution data. It is also impossible to assess the forecasts 
for more than a limited period, since weather systems only stay in the tine mesh for a 
short time. It has been found in general that 24 hour surface pressure forecasts do not 
change greatly when the resolution is reduced below 100 km, but the intensity of 
precipitation continues to increase. More details can be found in papers by Miyakoda 
and Rosati [61], Phillips [68], Anthes and Keyser [62], and Bosart (631, which 
include results from grid lengths as short as 34 km. There have been problems, 
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however, which may indicate difficulties in achieving the desired convergence of the 
solution. Inevitably, these tend to be unpublished, but it was found in early versions 
of both the ECMWF and U.K. models discussed in Section 4 that overdevelopment 
of depressions occured in many cases. This had to be dealt with by making 
adjustments to the way sub-grid-scale frictional processes were represented, in 
particular the vertical exchange of momentum between the lower layers of the model 
and the Earth’s surface. In development of the U.K. fine mesh model, which uses 
essentially the same scheme as set out in Section 4 but on a limited area, it has been 
found that precipitation amounts increase as the grid length is decreased from 100 km 
through 75 km to 50 km, in agreement with other authors, but that when checked 
against observations the extra precipitation in the 50 km model is sometimes 
incorrect and the 75 km model more accurate. Further development of the methods 
used to simulate sub-grid-scale vertical convective mixing may be required in order to 
resolve this problem. 

Another recent piece of work which may indicate convergence problems with the 
numerical method is a study by Williamson et al. [64]. They show that the initial 
data obtained by applying normal mode initialisation, as discussed in Section 3, to 
real data sets disagrees with the analysed observations by more than the obser- 
vational error. This implies that the analysis derived from observations does not 
represent a balanced model state. This can result from deficiencies in the analysis or 
interpolation method, errors in or absence of observed data, or differences between 
the forecast model and the atmosphere. Since the errors occur even where there is 
plenty of data and there are larger than normal observational errors, there is a 
possibility that they indicate problems with the forecast model. 

One of the usual explanations for the problems discussed above are deficiencies in 
the representation of sub-grid-scale processes. Research on these representations is 
probably more extensive than that on numerical solution of the governing equations 
and a review of it is out of the scope of this paper. Here we discuss a few aspects of it 
relevant to the mathematical problem. It has to be assumed that the effect of the sub- 
grid-scale processes on the results can be expressed in terms of information which is 
predicted explicitly, as in the standard problem of turbulent closure. However, the 
scales involved are probably too large for closures relevant to three-dimensional 
isotropic turbulence to be relevant, even if they could be found. It has been proposed 
by Leith [69] and Basdevant et al. [73] that two-dimensional turbulence theory be 
used. Any such theory leads to the formulation of a form for artificial viscous terms 
to be added to the equations. As discussed in [70], however, the form chosen for 
these terms has little impact on the results. The suggestion by Chorin [30] and others 
that three-dimensional turbulence is intermittent rather than homogeneous could lead 
to radically different closures. 

There has been more development work in vertical mixing processes. These are 
included in models as parts of routines for calculating precipitation and interactions 
with the surface of the Earth. Reviews of these representations are given in [ 1, 21. 
The vertical mixing between the ground and the lowest layers of the atmosphere is 
derived from observational studies. The mixing between layers in the model is usually 
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restricted to temperature and humidity so that in areas where a@,.+ > 0, the model 
relaxes rapidly towards the neutral state %?,/8p = 0. The amount of mixing is 
minimised in regions where a@,/@ < 0. (Here 0, is a potential temperature allowing 
for the effect of latent heat release as well as for adiabatic temperature changes.) It is 
not usual to include vertical mixing of momentum except close to the Earth’s surface. 
In some models attempts have been made to represent the vertical exchange of 
momentum due to the presence of sub-grid-scale lee waves set off by the flow of the 
air over mountains. 

These approaches all assume that the best practical approximation to the solution 
of (2.1)-(2.6) is produced by adding artificial mixing terms to ensure that the 
numerical solution stays smooth and hoping that the large scale predictions will 
correspond to reality. Since so much is unresolved, this procedure is clearly an act of 
faith. An alternative strategy would be to seek a piecewise smooth solution as can be 
done in certain other branches of physics. It is not clear whether such a description 
would be appropriate for atmospheric motions on scales larger than 50 km, and any 
such description would have to be essentially three-dimensional. The work described 
by Hoskins [26] gives some suggestive starting points. The control exerted on the 
solution by conservation laws for potential vorticity, mass, and potential temperature 
is so strong that a great deal can be inferred about the solution by almost qualitative 
methods. Further progress in this direction can be expected. 

6. RESULTS FROM NUMERICAL FORECASTS 

In this section we show some of the numerical forecasts produced by the models 
described in Section 4. The first is a sample three-day forecast from the 26th October 
1981. Results are shown for the height of the 500 mb constant pressure surface, for 
the temperature at 850 mb (about 5000 feet), and for the surface pressure. The 
weather fronts on the surface pressure charts have been inferred from the pressure 
and temperature charts. This case was chosen to illustrate how it is sometimes 
possible to forecast quite large changes from the initial state correctly. An impression 
of the overall standard over a large number of cases is given later. 

The observed 500 mb charts for 26 and 29 October are given in Figs. 3 and 4, with 
three-day forecasts valid on the 29th October from the ECMWF model and the 
Meteorological Office model in Figs. 5 and 6. Results are only shown for the 
European and North Atlantic areas, though one model was integrated globally and 
the other to 30” S. Consider first the observed changes at 500 mb over the three-day 
period. There has been considerable progression of the troughs and ridges on the 
chart. The low centre at 85” W has moved eastward to 55” W, and the centre at 
25” W has moved to 5’ W. The centre at 5’ E has relaxed north-eastwards and lost its 
identity, and the centre at 25O E has moved east to 55O E with an intensifying high 
centre to the north of it. The ECMWF forecast (Fig. 5) predicts all these changes. 
Detailed comparison shows some faults; for instance, the ridge in mid Atlantic is 
about loo too far east and is not intense enough, and the height values over the Baltic 
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FIG. 3. Height analysis at 500 mb for North Atlantic/Europe valid 122 on 26 October 198 I 

FIG. 4. As Fig. 3, valid 122 on 29 October 1981. 
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FIG. 5. Three day 500 mb height forecast valid 122 29 October 1981, ECMWF model. 

FIG. 6. Three day 500 mb height forecast valid 122 29 October 1981, U.K. model. 
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have risen too much. A spurious trough is also left over the East Coast of the USA at 
35” N. The Meteorological Office model (Fig. 6) also predicts all the major changes. 
The predicted central values of the high and low centres are less accurate than in the 
ECMWF forecast. Most features are too intense. The amplitudes of the waves in the 
height pattern is also generally greater, regardless of the truth. In this particular case, 
the amplitudes of the ridge at 30” W and the trough at 25” E are nearer the truth. The 
positional errors are present in both forecasts. 

The surface pressure and 850 mb temperature charts for 26 and 29 October are 
shown in Figs. 7 and 8. During the period the very deep depression near Iceland has 
moved east to Northern Scotland and filled. The systems originally at 90” W at 35” N 
and 65” N have almost merged into a complex depression at 50” W with a southern 
centre at 35” W associated with further fronts. An intense region of high pressure has 
formed behind them at 70’ W. The fronts originally over the U.K. have moved 
southeast and lost their identity. The depression at IO’ E 40’ N on the 26th has 
moved north-east to 60” N 30’ E together with its fronts. The wind over the U.K. has 
backed from north-west to west with fronts moving east into Germany, rather than 
south-east into Spain. 

The ECMWF model (Fig. 9) has forecast the main pressure centres quite well. The 
depression near Scotland is too shallow and too far west. The developments in the 
west Atlantic are correctly forecast except for the development of a spurious centre at 
35” N 70” W. Over Europe the forecast is less accurate. The ridge of warm air at 
40” E is over-intense and the depression over the Baltic region is not accurately 
forecast; the main trough is forecast to lie north-south rather than east-west. 

The Meteorological Office model (Fig. 10) produces a similar forecast. The main 
difference is near Scotland, where three separate centres are shown. The average of 
the three positions is about where the main centre should be. The forecast over 
Europe is similar to ECMWF. All the features are somewhat more intense than in the 
ECMWF forecast, again regardless of the truth. 

This comparison shows that both models gave essentially similar forecasts and 
predicted most of the observed changes over three days in this case. The 
Meteorological Offtce model gave more intense and somewhat less accurate high and 
low centres. At present this is believed to be because it was run from an analysis 
produced for the ECMWF model, which was consequently inconsistent with some of 
the model formulation. Some over-development takes place while the data in the 
bottom boundary layer, which controls the effective friction, adjusts to suit the Met 
Office model. 

These differences are typical of those produced in sensitivity experiments, when 
one feature of a model formulation is altered. Such changes may affect the overall 
intensity of the systems produced, but not affect the major differences between the 
forecasts and the observations. 

In order to gain an overall impression of the current standard of numerical 
forecasts we can use either a statistical measure, as already shown in Fig. 1, or 
subjective assessments. In the latter case the numerical forecasts are assessed 
according to whether they provide useful guidance to the forecaster. A summary of 
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FIG. 7. Surface pressure and 850 mb temperature analysis valid 12Z on 26 October 1981. 
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FIG. 9. Three day surface pressure and 850 mb temperature forecast valid 122 29 October 1981, 
ECMWF model. 

FIG. 10. As Fig. 9, U.K. model. 
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TABLE I 

Assessment of ECMWF Model in Period 3/3/80 to 9/3/81 (52 Cases) 

Day 

1 2 3 4 5 6 7 

N. Atlantic/Europe 
Surface 

A 50 44 21 10 2 2 1 
B 2 8 25 21 17 7 1 
C 0 0 6 21 33 43 44 

500 mb 
A 52 48 30 13 2 2 1 
B 0 4 19 25 25 15 8 
C 0 0 3 14 25 35 43 

U.K. area 
Surface 

A 49 31 30 17 9 5 2 
B 3 15 16 19 19 18 14 
C 0 0 6 16 24 29 36 

500 mb 
A 51 47 31 21 16 10 4 
B I 5 12 19 19 17 II 
C 0 0 3 12 17 25 37 

Note. Assessment scheme: A, good guidance; B, no major error; C, misleading in some important 
respect. 

such assessments for the ECMWF model is given in Table I. For further details of 
this assessment see [lo]. 

While inevitably subjective, this table indicates that very few major errors of 
significance to a medium range forecaster occur by day 3, but that half or more 
forecasts are misleading beyond day 5. This assessment was carried out indepen- 
dently by all 15 member states of ECMWF, and the conclusions of all of them were 
in rough agreement as to how long the forecasts were useful. 

7. DISCUSSION 

This paper illustrates that considerable progress has been made in numerical 
weather prediction in the last ten years and useful results are being obtained up to 
four days ahead. However, whereas ten years ago it was relatively easy to identify the 
major sources of error and rectify them, as set out in [9], it is now no longer so clear 
what further developments are required. It is well known that the atmosphere is 
inherently unpredictable and that the length of time for which it is predictable varies 
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markedly from case to case (Lorenz [65]). It is therefore not clear how much more 
can be done. There is an obvious need to generate better initial data sets, both by 
using more observations and by improving assimilation techniques. 

Other errors can be studied in the context of their effect on the climatology of the 
model. In [71] the systematic forecast errors in the ECMWF model are considered in 
this way. The discussion in Section 5 illustrated some possible areas of further work. 
In particular, more effort is needed in understanding the solutions to the inviscid 
equations. This is likely to become even more important as emphasis is placed on 
mesoscale modelling with gridlengths of 10-50 km. It may well be that in the next 
ten years it will be this aspect of weather prediction which makes the greatest 
advance. 
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